Upscaling geochemical reaction rates using pore-scale network modeling

نویسندگان

  • Li Li
  • Catherine A. Peters
  • Michael A. Celia
چکیده

Geochemical reaction rate laws are often measured using crushed minerals in well-mixed laboratory systems that are designed to eliminate mass transport limitations. Such rate laws are often used directly in reactive transport models to predict the reaction and transport of chemical species in consolidated porous media found in subsurface environments. Due to the inherent heterogeneities of porous media, such use of lab-measured rate laws may introduce errors, leading to a need to develop methods for upscaling reaction rates. In this work, we present a methodology for using pore-scale network modeling to investigate scaling effects in geochemical reaction rates. The reactive transport processes are simulated at the pore scale, accounting for heterogeneities of both physical and mineral properties. Mass balance principles are then used to calculate reaction rates at the continuum scale. To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model are compared to the rates calculated by directly using laboratory-measured reaction rate laws and ignoring pore-scale heterogeneities. In this work, this methodology is demonstrated by upscaling anorthite and kaolinite reaction rates under simulation conditions relevant to geological CO2 sequestration. Simulation results show that under conditions with CO2 present at high concentrations, pore-scale concentrations of reactive species and reaction rates vary spatially by orders of magnitude, and the scaling effect is significant. With a much smaller CO2 concentration, the scaling effect is relatively small. These results indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. This work demonstrates the use of pore-scale network modeling as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allows the effects of pore-scale heterogeneities to be integrated into system behavior at multiple scales, thereby identifying important factors that contribute to the scaling effect. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reply to ‘ ‘ Comment on upscaling geochemical reaction rates using pore - scale network modeling ’ ’ by Peter C . Lichtner and Qinjun Kang

Our paper ‘‘Upscaling geochemical reaction rates using pore-scale network modeling’’ [1] presents a novel application of pore-scale network modeling to upscale mineral dissolution and precipitation reaction rates from the pore scale to the continuum scale, and demonstrates the methodology by analyzing the scaling behavior of anorthite and kaolinite reaction kinetics under conditions related to ...

متن کامل

Multiblock Pore-Scale Modeling and Upscaling of Reactive Transport: Application to Carbon Sequestration

In order to safely store CO2 in depleted reservoirs and deep saline aquifers, a better understanding of the storage mechanisms of CO2 is needed. Reaction of CO2 with minerals to form precipitate in the subsurface helps to securely store CO2 over geologic time periods, but a concern is the formation of localized channels through which CO2 could travel at large, localized rates. Pore-scale networ...

متن کامل

An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO2. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute t...

متن کامل

High Performance Computations of Subsurface Reactive Transport Processes at the Pore Scale

Field applications such as carbon sequestration drive the geochemistry of porous media far from equilibrium in relatively short time scales. In these short time frames, feedback processes between flow and geochemical reactions (e.g., mineral dissolution-precipitation) that take place at the pore scale are key to understanding the discrepancy between lab-derived reaction rates and the continuum ...

متن کامل

Pore-scale Simulations of Pore Clogging and Upscaling with Large Velocities

Computational modelling of processes at pore-scale allows to get detailed insight into their nature. It also provides tools to improve coarse-scale models in which porous medium is considered as a permeable continuum. In this paper, we use the simulations at microscale combined with an upscaling procedure and describe the impact of small changes in the pore morphology on the macroscale paramete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006